
CS 860: Bounded Space On-Line Bin Packing Algorithms
With Good Average Case Performance

Matthew Robertson
University of Waterloo

August 15, 2014

1 Introduction
The bin packing problem is a classic problem of computer science, and been studied extensively
both in an off-line and on-line setting. This paper is interested in bounded space on-line bin packing
algorithms specially with good average case performance. The bin packing problem and other basic
definitions are given in Section 2 using the terminology in this paper. A brief background about
the problem and relevant theorems are given in Section 3. The known algorithms in Section 4
are presented using a construction that lends itself well to describing bounded space algorithms
specifically. The construction gives intuitive bounded space variants of traditionally unbounded
space algorithms. The algorithms are listed in an order with relevant theorems, analysis, and
experimental results that progress naturally towards the k-Bounded Harmonic-m Match algorithm
described in Section 5. The experimental results are summarized and explained in Section 6.

2 Definitions
Definition. The bin packing problem is the task of packing a given sequence of items into the
minimum number of unit capacity bins. An item is an entity with a size property. The size of an
item must be greater than 0 and no more than a single unit. A bin is a container that packs items.
To pack an item is to place the item into a bin. Every item must be packed in exactly one bin.
Once an item has been packed, it can never be moved or duplicated. The level of a bin, the total
size of all items packed into the bin, can never exceed a single unit. There is an endless supply of
bins.
Definition. A bin packing algorithm (Alg) is an algorithm to either solve or approximate the
bin packing problem. An algorithm is on-line if it packs items in the order with witch they are
revealed, without any knowledge of the future. Each item is packed based solely on the sizes of
the previous items and the levels of the open bins. A bin is open if the algorithm is aware of it. A
k-bounded space algorithm (Algk) is an algorithm with the limitation that at no time during its
operation can the number of open bins exceed k.
Definition. The performance ratio of an on-line algorithm is the ratio between the cost of the
algorithm and the cost of an optimal algorithm. The cost of a bin packing algorithm is the total
number of bins used by the algorithm to pack a given sequence of items. An optimal algorithm has
unlimited computational power and knowledge of the future. The worst case performance ratio of
an algorithm is called the asymptotic competitive ratio and is given by

R(Alg) = lim sup
n→∞

sup
σ

(
cost(Alg(σ))
cost(Opt(σ))

∣∣∣∣cost(Opt(σ)) = n

)
.

Definition. The expected performance ratio for a random input of items with sizes following a
uniform distribution is called the average case performance ratio and is given by ER(Alg).

This paper is interested in bounded space on-line bin packing algorithms with good average
case performance. Ideally, such algorithms should have the best possible worst case performance,
or competitive ratio, possible for bounded space on-line algorithms.

1

3 Background
The bin packing problem has been studied since the early 1970’s. Although this problem is known
to beNP-complete [6], there exists several polynomial time approximation algorithms that are very
practical in reality. This paper only focuses on a portion of these algorithms; those algorithms
which are on-line and use bounded space. Some unbounded space algorithms have very natural
bounded space variants.

Theorem 1. No polynomial time bin packing algorithm can have a competitive ratio better than
3
2 unless P = NP.

Proof of Theorem 1. If such an algorithm existed, it could be used to solve the partition problem,
which is also known to be NP-complete, in polynomial time. The partition problem is the problem
of partitioning a given multiset of positive integers into two subsets such that both subsets sum up
to the same total. An instance of the partition problem can be converted to an instance of the bin
packing problem by creating a sequence of items with the same proportions as the given multiset,
such that the items total size is exactly two units. The items will be packed into two bins if and
only if the multiset can be partitioned into two sets with the same total sum. If the items can
be packed into two bins, an approximation algorithm with a better competitive ratio than 3

2 will
definitely find that packing, because a single bin cannot possibly fit two units and 3 or more bins
would give a competitive ratio of 3

2 or worse.

Theorem 2. No polynomial time on-line bin packing algorithm can have a better competitive
ratio than 1.540 [8].

Theorem 3. No k-bounded space on-line bin packing algorithm Algk can achieve a competitive
ratio better than

R(Algk) = h∞ =
∞∑
i=1

1
ui − 1 ≈ 1.69103

where u1 = 2 and ui+1 = ui(ui − 1) + 1 [6].

Theorem 4. No k-bounded space on-line bin packing algorithm Algk can have a better average
case performance ratio than

ER(Algk) = 1 + 1
4(k + 1)

[2].

4 Algorithms
Henceforth in this paper, an algorithm refers to a polynomial time k-bounded space on-line bin
packing approximation algorithm unless otherwise noted.

An algorithm (Algmk) can be broken down into two components, a classification method (CMm)
and a packing strategy (PSmk). A CM is a method to classify an item into one of m classifications
based solely on its size. A classification Ij is an interval of possible item sizes. Classifications must
have the property that

m⋃·
j=1
Ij = (0, 1] units .

A PS is a strategy to choose which bin to pack an item into based on its size, classification, and the
current open bins. A PS strategy that is unaware of classifications is called a simple PS (SPSk).
The notation Algmk = (CMm,PSmk) is used to represent an algorithm. If the algorithm uses an
SPS strategy, the notation can be simplified to Alg1

k = (∅,SPSk) or just Algk = SPSk.
An SPS strategy and the algorithm that uses it can be though of as the same thing because

such an algorithm does not have a CM method. For example, the k-Bounded Best Fit algorithm
B-Bfk = B-BFk.

2

4.1 Next Fit
Next Fit (NF) is a the most basic SPS strategy. In NF, the next item is packed into the current
open bin. Once that bin becomes full, it is flipped. A bin is considered full when the next item to
be packed would cause the bins level to exceed a single unit. To flip a bin means to close that bin,
open a new bin in its place, and pack the next item into the new bin.

The Nf algorithm uses 1-bounded space, has a competitive ratio R(Nf) = 2 [3], and an average
case performance ratio of ER(Nf) = 4

3 = 1.3̄ [1].

Theorem 5. The Next Fit algorithm has a competitive ratio of R(Nf) = 2.

Proof of Theorem 5. The competitive ratio of Nf is at most 2 because no more than one bin
can be less than half full. The nature of Nf will not flip the current open bin until it is full. If the
current bin is less than half full and the next item is less than half a unit, Nf will pack it into the
current open bin. Therefore R(Nf) ≤ 2.

A sequence of n items to make Nf cost twice that of Opt can easily be constructed by alter-
nating items of sizes half a unit and ε, where n is a multiple of 4 and ε ≤ 2

n . The cost of Nf is
cost(Nf) = n

2 because every item of size half a unit (except the first) causes the current open bin to
flip, essentially wasting half of it. An optimal packing would be to place two, half unit sized items
into each bin and place all the ε sized items into a single bin, giving a cost of cost(Opt) = n

4 + 1.
Therefore, as n→∞, R(Nf) = 2.

The average case performance ER(Nf) can be measured experimentally by repeatably running
the algorithm on sequences of 1,000,000 items with a uniform distribution of sizes. The experiment
is repeated 1000 times, and item sizes are represented by integers between 0 and 231 − 1. The
measured average performance ratio is MR(Nf) = 1.3333. Over all experiments, the maximum
measured performance ratio MRmax(Nf) = 1.3344, and the minimum MRmin(Nf) = 1.3322. This
is very close to the theoretical average case performance ratio. All measured performance ratio
experiments are run similarly.

4.2 Next-k Fit
Next-k Fit (NFk) is an extension of the NF strategy to allow multiple open bins. In NFk, the next
item is packed into the oldest of the k open bins in which it fits. If the item does not fit in any
open bin, the oldest overall bin is flipped. The oldest bin is the least recently flipped bin.

The Nfk algorithm uses k-bounded space, Nf1 is equivalent to Nf, and Nf∞ is equivalent to
the unbounded space algorithm First Fit (Ff). The competitive ratio of Nfk for k ≥ 2 is

R(Nfk) = 17
10 + 3

10(k − 1)

[7]; worse than the competitive ratio of Ff, R(Ff) = 17
10 = 1.7 [4]. The results of similar MR

experiments to the one performed on Nf are presented below.

Nfk k = 2 5 10 20 40 80 160 320 640
MRavg 1.2386 1.1564 1.1156 1.0858 1.0637 1.0470 1.0345 1.0252 1.0183
MRmax 1.2396 1.1572 1.1165 1.0867 1.0643 1.0477 1.0351 1.0257 1.0187
MRmin 1.2376 1.1556 1.1148 1.0852 1.0630 1.0464 1.0340 1.0247 1.0180

As k increases, MR(Nfk) gets closer to 1, this shows for any k > 1, Nfk is an improvement to Nf.

4.3 Best-k Fit
Best-k Fit (BFk) is another SPS strategy similar to NFk. The difference is that BFk will place the
next item into the largest, not oldest, open bin in which it fits. If the item does not fit anywhere,
the oldest bin is still flipped.

Bfk uses k-bounded space, Bf1 is still equivalent to Nf, and Nf∞ is equivalent to the un-
bounded space algorithm Best Fit (Bf). The competitive ratio of Bfk is

R(Nfk) = 17
10 + 3

10k

3

[7], slightly better than Nfk but not as good as the unbounded space algorithms Ff and Bf both
with competitive ratio R(Bf) = 17

10 = 1.7 [7].

4.4 k-Bounded Best Fit
The k-Bounded Best Fit (B-BFk) strategy is very similar to BFk. The only difference is that when
the next item does not fit anywhere, B-BFk will flip the largest, not oldest, open bin.

This small change gives B-Bfk a competitive ratio of 17
10 = 1.7 for any k ≥ 2, matching the

unbounded space algorithms Ff and BF [2]. Experimental MR results are presented below.

B-Bfk k = 2 5 10 20 40 80 160 320 640
MRavg 1.1783 1.1015 1.0673 1.0439 1.0280 1.0175 1.0107 1.0065 1.0041
MRmax 1.1790 1.1024 1.0680 1.0445 1.0287 1.0185 1.0115 1.0072 1.0049
MRmin 1.1776 1.1008 1.0665 1.0431 1.0273 1.0169 1.0101 1.0060 1.0035

Clearly, as k increases, MR(B-Bfk) approaches 1 faster than MR(Nfk). Although both of the
unbounded space versions of the algorithms have ER(Bf) = ER(Nf) = 1; this experiment shows
the bounded space variants ER(B-Bfk) < ER(Nfk) for k ≥ 2. This has already been known as
“best is better than first” [2].

4.5 Relaxed On-Line Match
The bounded Relaxed On-Line Match (ROMk) strategy is a purposed bounded space variant of
Relaxed On-Line Match (ROM). ROM is an SPS strategy that packs small items with large items.
An item is considered large if it’s size is greater than half a unit, and small otherwise. If the next
item is large, ROM will open a new bin and pack it there. If the next item is small, ROM will
pack it with a matching item, that is pack the small item using BF into a bin that already has a
large item, and close that bin. If the small item does not match anywhere, the item is packed using
NF into a reserved bin. Since ROM uses unbounded space, there is no defined flipping strategy
for when there is no space to pack a large item. A very natural flipping strategy for ROMk is to
flip the largest non-reserved open bin when needed to pack a large item. The MR experimental
results are presented below.

Romk k = 2 5 10 20 40 80 160 320 640
MRavg 1.2432 1.1448 1.0965 1.0615 1.0376 1.0224 1.0131 1.0076 1.0046
MRmax 1.2442 1.1456 1.0972 1.0622 1.0384 1.0232 1.0138 1.0084 1.0055
MRmin 1.2423 1.1441 1.0958 1.0607 1.0367 1.0217 1.0124 1.0070 1.0038

Due to the nature of ROMk, it is possible to not utilize all of the open bins. Another purposed
modification is to not close matched bins immediately but wait until they get flipped later, giving
them the potential to fit several small items. This will make non-closing ROMk (NC-ROMk)
behave similar to B-BFk.

Theorem 6. The non-closing bounded Relaxed On-Line Match (Nc-Romk) algorithm will not
cost more than the normal bounded Relaxed On-Line Match (Romk) algorithm for any given
sequence of items σ.

Proof of Theorem 6. Rom is monotone, meaning that removing an item from the sequence
σ will not increase the cost of packing it [5]. In the Nc-Romk algorithm, any item σj that
is packed into an already matched bin is equivalent to skipping that item in Romk. Therefore
cost(Nc-Romk(σ)) ≤ cost(Romk(σ)) for any sequence of items σ.

The above MR experiments are repeated with the non-closing variant below.

Nc-Romk k = 2 5 10 20 40 80 160 320 640
MRavg 1.2338 1.1203 1.0754 1.0472 1.0293 1.0180 1.0109 1.0066 1.0041
MRmax 1.2347 1.1212 1.0761 1.0479 1.0301 1.0186 1.0115 1.0073 1.0049
MRmin 1.2329 1.1195 1.0748 1.0466 1.0286 1.0174 1.0103 1.0061 1.0036

4

Nc-Romk does have a better performance ratio, close to that of B-Bfk. But the competitive ratio
of Romk and Nc-Romk is R(Romk) = R(Nc-Romk) = 2.

Theorem 7. The competitive ratio of Romk and Nc-Romk is R(Romk) = R(Nc-Romk) = 2.

Proof of Theorem 7. For any sequence of only small items, Romk and Nc-Romk are essentially
Nf. The worst case of Nf can be achieved with only small items. By Theorem 5, R(Nf) = 2.
Therefore R(Romk) ≥ 2 and R(Nc-Romk) ≥ 2. Of the utilized non-reserved bins, none can be less
than half full. So by an argument very similar to that in the proof of Theorem 5, R(Romk) ≤ 2
and R(Nc-Romk) ≤ 2. Therefore R(Romk) = 2 and R(Nc-Romk) = 2.

4.6 Harmonic-m
In contrast to an SPS, a PS strategy alone does not make an algorithm; it must be accompanied by
a CM method. Harmonic-m (HAm) is a CM method that classifies item sizes into the m intervals

Ij =

(

1
j+1 ,

1
j

]
, 1 ≤ j < m(

0, 1
j

]
, j = m.

A naive PS strategy (N-SPSk/m) is a naive way to augment an SPS to be aware of classifications.
N-SPSk/m will partition the k open bins into m isolated groups, and apply the SPSk/m strategy
to each group independently.

The Harmonic-m algorithm is given by Hamk =
(

HAm,N-NFk/m
)

where N-NF is the naive
classified version of the NF strategy, and k = m. Because of this, k may be omitted from the
notation, giving the simpler notation Ham = (HAm,N-NF). In Ham, the next item is packed into
the open bin corresponding to its classification using the simple NF strategy.

Theorem 8. As m increases, the Harmonic-m (Ham) algorithm has a competitive ratio that
approaches R(Ham) = h∞ ≈ 1.69103 [6].

Theorem 9. The Harmonic-m algorithm has an average case performance ratio of

ER(Ham) =
∞∑
j=1

2
j2(j + 1) ≈ 1.2899 .

Proof of Theorem 9. Each bin Bj corresponding to each classification Ij = (1
j+1 ,

1
j] for each

1 ≤ j < m can pack exactly j items before being flipped. The last bin Bm corresponding to
classification Im = (0, 1

m] can pack at least m items. For a sequence σ of length n with a uniform
distribution of item sizes, there is expected n(1

j −
1
j+1) items of classification Ij fitting at least j

items per bin. So the total cost of Ham is expected to be

E(cost(Hmm(σ))) ≤
m−1∑
j=1

n
(

1
j −

1
j+1

)
j

+
n
(1
m − 0

)
m

= n

m−1∑
j=1

1
j2(j + 1) + 1

m2

 .

The cost of an an optimal algorithm is at least the sum of all the item sizes

cost(Opt(σ)) ≥
n∑
j=1
|σj |

where |σj | is the size of item σj . So the expected cost of an optimal algorithm for a uniformly
distributed sequence is given by

E(cost(Opt(σ))) ≥
n∑
j=1

0.5 = n

2 .

5

The average case performance ratio of Ham is

ER(Ham) = E(cost(Hmm(σ)))
E(cost(Opt(σ)) ≤ 2

m−1∑
j=1

1
j2(j + 1) + 1

m2

 .

Therefore, as m→∞, the average case performance ratio of Ham approaches

ER(Ham) =
∞∑
j=1

2
j2(j + 1) ≈ 1.2899 .

The results of running the MR experiment on Ham are presented below.

Ham m = 2 5 10 20 40 80 160 320 640
MRavg 1.2986 1.2901 1.2899 1.2899 1.2899 1.2900 1.2900 1.2903 1.2909
MRmax 1.2996 1.2910 1.2908 1.2910 1.2907 1.2909 1.2910 1.2914 1.2918
MRmin 1.2976 1.2892 1.2889 1.2891 1.2892 1.2891 1.2892 1.2895 1.2901

Interestingly, after only m = 10 classifications, MR(Ham) gets very close to the average case
performance ratio 1.2899, but after m = 80, the measured performance starts to degrade. Bins
corresponding to very small items are likely to waste more space. Any m > 6 is enough to have
a competitive ratio better than 1.7, and it has been recommended that m ≤ 12 should be used in
practice [6]. So an m value of 10 is a nice round number to use for a good guaranteed worst case,
but Ham does not have a good average case compared to B-Bfk.

4.7 Harmonic-m Match
Harmonic-m Match (HMm) is a CM very similar to HAm+1. Each classification Ij of HMm

for 1 ≤ j ≤ m contains the interval Ij+1 of HAm+1 and a matching subinterval of (0, 1
2]. The

classification Ij of HMm is given by

Ij =

(

1
j+2 ,

1
j+1]

⋃
(j
j+1 ,

j+1
j+2

]
, 1 ≤ j < m(

0, 1
m+1]

⋃
(m
m+1 , 1

]
, j = m.

The bounded Harmonic-m Match (Hmm
k) algorithm is a naive bounded space variant of the

unbounded space Harmonic-m Match (Hmm) algorithm. Hmm will naively apply an instance of
the simple ROM strategy for each classification. Since Hmm is given by (HMm,N-ROM), a very
natural way to define the bounded space Hmm

k is
(

HMm,N-ROMk/m

)
. Hmm has an average case

performance ratio of 1 [5]. Since Hmm
k is a k-bounded space algorithm, its average case performance

ratio can not be better than 1
4(k+1) .

Theorem 10. If k ≥ m + 1, then as m increases the competitive ratio of Hmm
k will approach

R(Hmm
k) = h∞ ≈ 1.69103.

Proof of Theorem 10. Given a sequence of items σ, the cost of Hmm
k is no more than the cost

of Ham+1 for any k ≥ m + 1. Since Hmm
k has m classifications, the N-ROM strategy has m

reserved bins for small items to be packed with NF strategy. Each reserved bin of classification
Ij , 1 ≤ j ≤ m for Hmm

k corresponds to a bin of classification Ij+1 for Ham+1. For any sequence
of only small items, Hmm

k and Ham+1 will pack the items exactly the same. The two algorithms
are essentially the same for small items. They differ with large items.

First, consider the case k = m + 1. The single non-reserved bin of Hmm
m+1 corresponds to

the bin of classification I1 = (1
2 , 1] for Ham+1. All large items will be packed into this bin, but

Hmm
m+1 has the potential to pack a matching small item into this bin, while Ham+1 does not.

Mark any small item in σ that matches the most recent preceding large item as matchable. The
cost of Hmm

m+1 on σ is equal to the cost of Ham+1 on σ with all the matchable items removed.

6

Since Ham+1 is monotone [5], removing the matchable items cannot increase the cost. Therefore
cost(Hmm

m+1) ≤ cost(Ham+1).
Now, consider the case k > m + 1. This case is just like the previous case except there are

multiple non-reserved bins in Hmm
k corresponding to I1 of Ham+1. Every large item in σ requires

its own bin in both Hmm
k and Ham+1, so they cost the same. For small items, everything is

the same except more items in σ are matchable. By the same argument as the previous case,
cost(Hmm

k) ≤ cost(Ham+1). Therefore R(Hmm
k) ≤ R(Ham+1) for any k ≥ m+ 1.

By Theorem 8, R(Hmm
k) ≤ h∞ and by Theorem 3, R(Hmm

k) ≥ h∞. Therefore, as m → ∞,
R(Hmm

k) = h∞ for k ≥ m+ 1.

The results of running the MR experiment on Hm10
k are presented below.

Hm10
k k = 20 40 80 160 320 640

MRavg 1.2019 1.1194 1.0733 1.0447 1.0269 1.0160
MRmax 1.2028 1.1204 1.0743 1.0456 1.0281 1.0171
MRmin 1.2009 1.1184 1.0724 1.0438 1.0260 1.0150

The measured performance ratio of Hm10
k is actually quite bad, considering the unbounded space

Hmm algorithm has an optimal average case. The poor performance is due to the N-ROMk/m

strategy not fully utilizing all the open bins. A non-closing variant of N-ROMk/m would do no
good because the naive strategy isolates each classification, making it impossible to match any two
small items with a large item of the same classification. An unmatched bin in one classification
may be flipped while free bins exist in other classifications. A more specialized PS is needed to
effectively utilize all of the available space.

5 k-Bounded Harmonic-m Match
The k-Bounded Harmonic-m Match (B-Hmm

k) algorithm is a carefully constructed bounded space
variant of the unbounded space Hmm algorithm. B-Hmm

k is given by (HMm,S-ROMm
k) where

S-ROMm
k is a specialized augmented version of the NC-ROMk strategy. If the next item is large,

S-ROMm
k will pack it into a new bin, flipping the largest non-reserved bin if there is no space to

open a new bin. If the next item is small, the strategy will attempt to pack it into the largest,
non-reserved bin, no larger than max(Ij) where Ij is the classification of the item, in which it fits.
It the item does not fit anywhere, it is packed into the m reserved bins using the Ham+1 strategy
for small items (no bin for the classification (1

2 , 1] of Ham+1).

Theorem 11. If k ≥ m + 1, then as m increases the competitive ratio of B-Hmm
k will approach

R(B-Hmm
k) = h∞ ≈ 1.69103.

Proof of Theorem 11. The proof of Theorem 10 applies to any bounded space variant of the
Hmm algorithm that has a reserved bin for each small classification of Ham+1 and at least 1
non-reserved bin for large items. Therefore the result also applies to B-Hmm

k for k ≥ m+ 1.

The results of running the MR experiment on B-Hm10
k are presented below.

B-Hm10
k k = 11 20 40 80 160 320 640

MRavg 1.2251 1.0689 1.0346 1.0195 1.0114 1.0067 1.0041
MRmax 1.2258 1.0697 1.0353 1.0203 1.0120 1.0073 1.0050
MRmin 1.2241 1.0683 1.0340 1.0189 1.0107 1.0062 1.0035

The B-Hm10
k algorithm performances quite well. As k increases, B-Hmm

k essentially becomes
closer and closer to B-Bfk while maintaining a better competitive ratio. Every time a small item
is matched with a large item, the new level of the bin can be considered a single large item of
a different classification, to be matched with an even smaller small item. By the time a bin is
flipped, it has had the opportunity to match several small items. The classifications in HMm span
different proportions of the interval (0, 1], so B-Hmm

k can expect different proportions of bins for
each classification. Allowing these proportions to change dynamically is what stops B-Hmm

k from
wasting bins and allows it to utilize a non-closing PS strategy.

7

6 Experimental Results
All the previous MR experimental results are listed in the table below.

MRavg k = 2 5 10 20 40 80 160 320 640
Nfk 1.2386 1.1564 1.1156 1.0858 1.0637 1.0470 1.0345 1.0252 1.0183
B-Bfk 1.1783 1.1015 1.0673 1.0439 1.0280 1.0175 1.0107 1.0065 1.0041
Romk 1.2432 1.1448 1.0965 1.0615 1.0376 1.0224 1.0131 1.0076 1.0046
Nc-Romk 1.2338 1.1203 1.0754 1.0472 1.0293 1.0180 1.0109 1.0066 1.0041
Ham=k 1.2986 1.2901 1.2899 1.2899 1.2899 1.2900 1.2900 1.2903 1.2909
Hm10

k - - - 1.2019 1.1194 1.0733 1.0447 1.0269 1.0160
B-Hm10

k - - - 1.0689 1.0346 1.0195 1.0114 1.0067 1.0041

The B-Bfk algorithm is clearly the winner in terms of average case performance for all the measured
k values, but has a competitive ratio of R(B-Bfk) = 1.7. The runner up is the Nc-Romk algorithm,
which has an even worse competitive ratio of R(Nc-Romk) = 2. However, the B-Hm10

k algorithm
comes in a strong third place and has a better competitive ratio of R(B-Hm10

k) ≈ 1.6910.

7 Conclusion
The B-Hmm

k algorithm performs almost as well as B-Bfk on average, but has a better worst case
performance. B-Hmm

k can be implemented almost as easily as B-Bfk, and in the same time and
space complexity. As k increases, the difference between B-Hmm

k and B-Bfk gets less and less
significant. However, an m value of 10 is still recommended for the same reason as explained for
Ham. Therefore this paper recommends any application that is current using B-Bfk to switch to
B-Hmm

k for essentially the same performance on average, but better worst case performance.
Future research could be done on the performance of B-Hmm

k on sequences of items with sizes
following non-uniform distributions. Because of the way B-Hmm

k allows the proportions of bins
corresponding to each classification to dynamically change, it probably performs quite well on
almost any distribution.

References
[1] Edward G Coffman Jr, Kimming So, Micha Hofri, and AC Yao. A stochastic model of bin-

packing. Information and Control, 44(2):105–115, 1980.

[2] János Csirik and David S Johnson. Bounded space on-line bin packing: best is better than
first. In SODA, pages 309–319, 1991.

[3] David S Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8(3):272–314, 1974.

[4] David S. Johnson, Alan Demers, Jeffrey D. Ullman, Michael R Garey, and Ronald L. Graham.
Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal
on Computing, 3(4):299–325, 1974.

[5] Shahin Kamali and Alejandro López-Ortiz. An all-around near-optimal solution for the classic
bin packing problem. arXiv preprint arXiv:1404.4526, 2014.

[6] Chan C Lee and Der-Tsai Lee. A simple on-line bin-packing algorithm. Journal of the ACM
(JACM), 32(3):562–572, 1985.

[7] W Mao. Besk-k-fit bin packing. Computing, 50(3):265–270, 1993.

[8] André van Vliet. An improved lower bound for on-line bin packing algorithms. Information
processing letters, 43(5):277–284, 1992.

8

